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Effect of finite computational domain on turbulence scaling law in both physical
and spectral spaces
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The well-known translation between the power law of the energy spectrum and that of the correlation
function or the second order structure function has been widely used in analyzing random data. Here, we show
that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the
correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power
laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in
the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to
data analysis in fluid turbulence and other stochastic syste31663-651X98)13911-9

PACS numbds): 47.27—i

I. INTRODUCTION power law range oE(k), C(r) andS(r) only approximately
scale as a power law far;<r<rq. Thus the power law

A fundamental question in turbulence research is the scakange in the physical space is much shorter than that of the
ing laws of various physical quantities in the so-called iner-corresponding power law given in the spectral space. This
tial range, where those quantities usually scale as powgrhenomenon was mentioned [ih], page 62, but it has not
laws. The scaling exponents are the focus of study. A famoubeen carefully analyzed. We show how the error of the
example is Kolmogorov's-2 law for turbulence energy in  power law approximation t€(r) andS(r) depends on the
the inertial range. This scaling behavior can be observedutoff wave numbersk, andk;, as well as the scaling ex-
both in the physical space from the structure functions and iponentn. The latter is of crucial importance. In fact, rifis
the spectral space from the energy spectrum. It is a commooutside the proper ranges, one may obtain scaling exponents
practice to relate power laws in the spectral space with thosef C(r) andS(r) independent oh.
in the physical space as follows: given a homogeneous ran-
dom field with an energy spectrui(k)~k™", its correla- Il. PURE POWER LAW
tion function C(r) scales as~r"" !, wherek is the wave
number in the spectral space ani$ distance in the physical ~ Letu(x) be a random scalar field. Its Fourier representa-
space. A similar relation holds for the second order structurdon Is
function: S(r)~r"1.

Mathematically, the above translations hold only when u(x)=J G(k) e’ *dk.

E(k) follows a pure power law that extends ke=0 andoe Rd

and with proper scaling exponents. These restrictions are not . ] )
met by many physical problems, including turbulence. InThe corr_elanon function and second order structure function
particular, the power law oE(k) may exist only in a finite are defined asC(x,x")=(u(x)u(x")); S(x,x")=(|u(x)
“inertial range”: ky<k=k,, wherek, andk; are the large —U(x')|?), where() denotes an ensemble average. Assum-
scale cutoff and the dissipation scale cutoff, respectivelyind homogeneity:(u(k)u(k’))=Q(k) s(k+k’), we have
Since the wave numbek corresponds to a characteristic thatC andSare functions of =x—x":

length scalé =2x/k, the corresponding physical scale in the

inertial range is given by{rq,rq], where r;=2ax/k; (i C(r):f Q(k)e*dk,

=0,1). A long scaling range, namellg;>k, or ro>rq, is R

usually required for the study of the physics in that range.
This is achieved, e.g., by high Reynolds number turbulent
flows. In this case, the general practice is to ignore the effect
of the finite scaling range.

In this paper we show that the finite scaling range doedf we further assum&(k)=Q(k) (k=1k|), thenC andSare
have important effects. More specifically, we study in detailfunctions ofr =|r|. The energy spectrurg(k) is given by
the translation of power laws from spectral space to physicaE (k) =S4Q(k)k® "1, whereSy=1, 27, and 4r in one, two,
space in three dimensio3D). We find that due to the finite and three dimensions, respectively. In 3D, we have

S(r)=2fRdQ(k)(1—eik'r)dk.
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kS ink kqr
C(r)=f0 E(k) S'Er ' dk, (1) A(r)=Jk p~ " Vsinp dp, (6)
of
o i kar sinp
S(r)zzfo E(k)| 1- SIErkr)dk. ¥) B(r)=2fkorp (1_T>dp' @)

_ , , . . The fact thatA and B are functions of indicates thatC(r)
Similar expressions can be obtained in gendrdimensional 4 S(r) no longer follow a single power law. On the other

space, see, e.42]. In the following, we use Eg$l) and(2) hand, if ko<1 andk,rs1, thenA~C, and B~S,, pro-
to demonstrate the relation between the power law scaling\ﬁded thatne (—1,1) andne (1,3), respectively. In this

in the spectral and physical spaces. They can also be ol&- C ds imatel | ith ex-
tained ford+# 3 in a similar fashion. It should be noted that p?,f';’mﬁ,rl f_n () are approximately power [aws with ex

the assumptions used in deriving E¢#) and (2) are suffi- In the following, we analyze the effect of finite inertial

cient but not necessary. All derivations below use only Eqsrange ofE(k) and that ofn on the scaling of correlation and

(.1) and (2). T_hys the results are applicable to any rar‘domstructure functions. The main idea is to obtain asymptotic
field that satisfies Eqgl) and (2). In particular, it can be a expansions forC(r) and S(r) in terms of kor(<1) and

vector f|e|d._ WherE (k) =k" for 0<k<ee, we hz_ave apure kir(>1). We would like to stress that need not be very

power law in the spe_ctral space..We now denvg the COM€mall to achieve the expansions. In factis strictly in the

sponding power law in the phi)fllcal space. Letting kr, physical space inertial range, i.ey<r <.

from Eq. (1) we haveC(r)=Cor""*, whereC, is given by To fix the notation, throughout the papéy, and «; de-

an improper integral note genericconstants. These constants depend and the
dimension of space but independentrofin addition, A; is

Co= fxpf(n+l)sin p dp, (3 independent ok, andk;.
0

A. A useful convergent expansion
which exists for—1<n<1. Note thah<1 andn>—1 en-
sure the convergence @f, at p=0 andp=c, respectively.
The value ofC, can be found iri3]:

First let us provide a result which will be frequently used
below. We consider the expansion of

kqr . kor
['(—n)sin(—n=z/2), 0<n<1 fk pfsinp dp=Co— fo p Hsinp dp
Co=1{ 72, n=0 (4) °
r(1-n)cog(1—n)w], —1<n<O. _J' p=ksin p dp.
kqr
Similarly, we haveS(r)=Syr" ! with
where 0<u<2. Denote the first and second integrals on the
. sin p right hand side by, andl,. Using the Taylor expansion of
SOZZJ p_n( )dp.

1- W (5  sinp for I, and integration by parts fdr,, we obtain
(Kor )~ # 4y
Unlike the case forC(r), the improper integral, exists l1= 2—u +0((kor)™#),
only for 1<n<3. We note that the ranges ofin which C,
and S, exist are different and do not overlap. Therefore in I o= (Kqr) “#coskyr +O((kyr) ~(EFm),

order to obtain the power law in the physical space one
should choose the correlation function or the structure funcrespectively. Therefore to the leading orders we have
tion according to the scaling exponant
ker (Kor)2™# _
f p #sinp dp~Cy— ﬁ—(klr) #cogkyr).
: . ®)
In practice,E(k) does not appear as a pure power law; it
scales as a power law only in a certain rang&.ofhus the  This expansion converges @ askor —0 andk;r—o. The
integrals in Egs(3) and(5) contain no singularities and con- convergence becomes slow wheris close to 2 or 0.
vergence is not a problem. However, we see below that the In the following, we expand\(r) andB(r). Whenn s in
scaling behaviors o€(r) andS(r) are still dictated by the the proper ranges, E(B) gives the desired result. Otherwise,
above convergence conditions for E¢3) and (5), respec- we may repeatedly apply integration by partsA¢r) and
tively. B(r) until the exponent ofp in the remaining integral falls
In this section we assum&(k)=k™" in the interval into the rang€0,2). By Eqg.(8), this remaining integral gives
[ko,kq1] (ki>kp) andE(k)=0 outside the interval. But the the constant term il\(r) andB(r), hence theAor" 1 term
results presented in this paper should be valid alde(K) in C(r) andS(r). However, this term may be dominated by
has a proper cutoff outside the interval. Then in generathe terms generated from the integration by parts, which are
C(r)=A(r)r" 1 andS(r)=B(r)r"" 1, where functions ofr. In these cases, th&,r"~! term is retained in

Ill. TRUNCATED POWER LAW Kor
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the expansions for the purpose of comparison while the other 100
two terms in Eq(8) are neglected. It should be noted that the

repeated integration by parts just mentioned is always pos-

sible if n is not an integer. For simplicity we assume this is 10
true in the expansions below.

T T T
i

B. Power law approximation for correlation function (7] 1

Case—1<n<1. Since X1+n<2, it follows immedi-
ately from Eq.(8) that

01k =
C(r)=r" Y Co+ A (Kkor)t "—cogkyr)(ker) 7.
9 L ]
. . 0.01 vl ol Ll et
Therefore the power Ia_lw a@(r) is only an approximate one. 0.001 0.01 0.1 1 10
In practice, one obtains the scaling exponentGff) by r
fitting it with a power function o
FIG. 1. Log-log plot ofS(r) for n=2. Solid line:S(r); dashed
f(r)=agr™, line: fitted curve using 3(r) with m=1; dotted line: fitted curve
using f4(r).

where ag and m are constants to be determined by a least
squares procedure. Equati@®) indicates that in order to C. Power law approximation for structure function
obtain an accurate exponent one should cha@(gg in anr The structure functiorS(r) can be analyzed using the

range such thatior)*~"<1 and ,r) """ P<1. Note that  same approach as above. In particular, we observe
the proper choice is determined by the truncation modes as

well as the exponent. On the other hand, because the leading . sinp
order error due to the truncation kg cancels withr"~ 1, we -
may better fitC(r) using a function of the form

dp=f p~ W (p—sinp)dp

p—sinp 1—-cosp

fo(N=agrm+a;. (10 - np" n(in—1)p" 1

It should be noted that the least squares fit now involves 1
solving a nonlinear system of equations. BT f p*~"sinp dp.
Case r>1. By Taylor expansions of simand integration n(n—1)

by parts, we obtain from Eq8) Thus the results fo€(r) can be applied directly to the last

C(r)~Agr" 14+ AkE "+ Ak3 "2, (11  integral. , _ _
Casel<n<a3. It is straightforward to derive

This expansion indicates that the error mainly comes from . 3n 1n
the low-mode truncation and the errdivergesas ko— 0. S(r)~r"" Aot Ai(kor)* "+ Ax(kyr)
Note that the last term is relatively smallj'f<3. In this case, + Ag(kyr) sin(kyr)].
we can use Eq(10) to extract the scaling exponent from
C(r). But if n>3, the last term dominates the first term note that the last term can be neglected beciyse 1. The
sinceA,(kor)® ">Ao. Thus,using Eq. (10) one may obtain erms withA, andA, are small ifn is not close to 3 and 1,
m~2 _regardlezss of the value of. i simple fix seems to be regpectively. In this case, one can directly extract the expo-
including ther< term in the fitting function, i.e., nent by fittingS(r) with f1(r). However,fs(r) is a better

Fo(F) = atgr ™+ g + aor 2 12 fitting function which includes the effect of both terms. This

3 0 1ree is demonstrated in Fig. 1, whe®&r) of a 2D random field
However, this does not solve the whole problem because th¥ith E(k) =k ? (ke [1,512) is plotted. Fast Fourier trans-
terms neglected in the expansitil) may dominate the first form (FFT) is used in c;)mputu)gS(r) and generating the
term if n is large. For example, ii>5, ak3 " term in the random field in the (2)2 domain on a 1024lattice. The

expansion becomes larger than the first and hencgy.  dotted line is obtained by usin . It has a slope of 0.99,
does not work. quite close to the exact value, 1. When using to avoid

Case < —1. solving the nonlinear system of equations, wenet 1 and
computea;. We haveay=4.92, a;=—0.007 51, anda,
C(r)~Aor”*1+A1kl*<”“>r*2cos(k1r), =—0.757, indicating that"~? scaling dominates. In addi-

tion, our tests show that the fitting results are sensitive to the
fixed r, C(r)—w ask;— due to the second term. This data used. The result reported here is obtained from fitting
term, while containing fast oscillations, ckg(), decays S(r) in ther interval[0.098, 0.196 which satisfies the con-
slower tharnr" 1. Thus it is dominating. We may replac®  dition r,<r<r,. Violating this condition renders an inaccu-
in Eq. (12) by r ~? to reflect the asymptotics; however, this rate fitted scaling exponent. Furthermore, we note that the
modification is not helpful because of the rapid oscillationsKolmogorov law for homogeneous turbulence, having
in the coefficient. =2, belongs to this case.
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100 F—r—rrrm——— T see that the contributions of the smooth cutoff functions are
- ] rather small under the assumptidgs <1 andk,>1. This is
0F E because the cutoff functions are regulakatO and usually
; ? _ much less singular ds— than the power law itself. There-
fore the results obtained above for the inertial range also
01 L _; hold for the cases with smooth cutoffs. On the other hand,
o the cutoff functions should have a strong effect outside the
0.01 & = inertial range. For example, they would change the bending
3 3 at the two ends of the power law in the physical space in
0.001 3 I F|g 1.
0.0001 | .
3 V. CONCLUDING REMARKS
107 el In this paper we have studied the translation between the
0.001 0.01 0.1 1 10

power law of the energy spectrum and that of the correlation
function or the second order structure function. We have

FIG. 2. Log-log plot of S(r) for n=4.5. Solid line:S(r);  obtained the following four conclusions.
dashed line: fitted curve usirfg(r) with m=3.5; dotted line: fitted ) .
curve usingf(r). (1) Power laws in spectral and physical spaces have

simple correspondence only far in proper ranges, i.e.,
Case n>3. We have (—=1,D and(1,3), respectively, for the correlation and struc-
ture functions. The effect of finite power law range in the
S(r)~Agr" T+ Ay "2 (13)  spectral space results in a much shorter power law range in
) ) the physical space.
Equation(13) differs from Eq.(11) only by a constant term.  (2) Based on the asymptotic expansions, a fitting function
The above test is performed again here wits 4.5. The  f, is proposed for better recovery nffrom S(r) andC(r).
results are shown in Fig. 2. The slope of the dotted lingegr g given value oh, we recommend using eithe(r)
(flttlng with fl) is 198, close to 2 instead of—1=3.5 as (1<n<3) or C(r) (_1<n< 1) for Studying the corre-
predicated by Eq(13). Lettingm=3.5 in f3, we find ap= sponding power law in the physical space.
—0.338,a;=5.69<10 °, anda,=1.38. Thus the? term is (3) Whenn is outside the proper ranges, the correlation
indeed larger. Our tests show that increasingakesag/a,  and structure functions are generally dominated by some
smaller and hence more dominarit scaling inS(r). Itis  functions ofr that are independent of Thus recovering is
also seen from the figure th&§ does not fit better thaf;  very difficult, if not impossible.
due to largen. (4) Following the analysis outlined above, one finds that
Case n<1. The leading orders di(r) are the translation of a power law from the physical space to the
spectral space suffers similar problems.

r

S(r)=Aor "1+ Akl "+ Ayky "r Esin(kqr).
A fundamental question relevant to the above observa-
Note that for fixedr, S(r)—o ask;—~. |, here contains tions is, which space in the power law of a physical process,
only I,. Furthermore, 2 u=1-n, |, canceling withr"™ 1 such as turbulence, has a wider range of applicability intrin-
gives a constant term. Wher»> 0, Eq.(10) can be used since sically? For homogeneous turbulence in a periodic box, vari-
the last term is small. However, wher<0, we have a situ- ous numerical studies seem to indicate that the spectral space

ation similar to that ofC(r) whenn<—1. is more “intrinsic” (in the sense that the power law range is
longen. However, a general answer to the question is beyond
IV. POWER LAWS WITH SMOOTH CUTOFF the scope of this paper.
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