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Effect of finite computational domain on turbulence scaling law in both physical
and spectral spaces
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The well-known translation between the power law of the energy spectrum and that of the correlation
function or the second order structure function has been widely used in analyzing random data. Here, we show
that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the
correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power
laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in
the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to
data analysis in fluid turbulence and other stochastic systems.@S1063-651X~98!13911-9#

PACS number~s!: 47.27.2i
ca
er
w
ou

ve
d
m
o
ra

l
u

en

n
In

ely
ic
e

ge
en
fe

oe
ta
ic

the
his
t
he

-

ents

ta-

ion

m-
I. INTRODUCTION

A fundamental question in turbulence research is the s
ing laws of various physical quantities in the so-called in
tial range, where those quantities usually scale as po
laws. The scaling exponents are the focus of study. A fam
example is Kolmogorov’s25

3 law for turbulence energy in
the inertial range. This scaling behavior can be obser
both in the physical space from the structure functions an
the spectral space from the energy spectrum. It is a com
practice to relate power laws in the spectral space with th
in the physical space as follows: given a homogeneous
dom field with an energy spectrumE(k);k2n, its correla-
tion function C(r ) scales as;r n21, wherek is the wave
number in the spectral space andr is distance in the physica
space. A similar relation holds for the second order struct
function: S(r );r n21.

Mathematically, the above translations hold only wh
E(k) follows a pure power law that extends tok50 and`
and with proper scaling exponents. These restrictions are
met by many physical problems, including turbulence.
particular, the power law ofE(k) may exist only in a finite
‘‘inertial range’’: k0<k<k1 , wherek0 andk1 are the large
scale cutoff and the dissipation scale cutoff, respectiv
Since the wave numberk corresponds to a characterist
length scalel 52p/k, the corresponding physical scale in th
inertial range is given by@r 1 ,r 0#, where r i52p/ki ( i
50,1). A long scaling range, namely,k1@k0 or r 0@r 1 , is
usually required for the study of the physics in that ran
This is achieved, e.g., by high Reynolds number turbul
flows. In this case, the general practice is to ignore the ef
of the finite scaling range.

In this paper we show that the finite scaling range d
have important effects. More specifically, we study in de
the translation of power laws from spectral space to phys
space in three dimensions~3D!. We find that due to the finite
PRE 581063-651X/98/58~5!/5841~4!/$15.00
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power law range ofE(k), C(r ) andS(r ) only approximately
scale as a power law forr 1!r !r 0 . Thus the power law
range in the physical space is much shorter than that of
corresponding power law given in the spectral space. T
phenomenon was mentioned in@1#, page 62, but it has no
been carefully analyzed. We show how the error of t
power law approximation toC(r ) andS(r ) depends on the
cutoff wave numbers,k0 andk1 , as well as the scaling ex
ponentn. The latter is of crucial importance. In fact, ifn is
outside the proper ranges, one may obtain scaling expon
of C(r ) andS(r ) independent ofn.

II. PURE POWER LAW

Let u(x) be a random scalar field. Its Fourier represen
tion is

u~x!5E
Rd

û~k!eik•xdk.

The correlation function and second order structure funct
are defined asC(x,x8)5^u(x)u(x8)&; S(x,x8)5^uu(x)
2u(x8)u2&, where^ & denotes an ensemble average. Assu
ing homogeneity:^û(k)û(k8)&5Q(k)d(k1k8), we have
that C andS are functions ofr5x2x8:

C~r !5E
Rd

Q~k!eik•rdk,

S~r !52E
Rd

Q~k!~12eik•r !dk.

If we further assumeQ(k)5Q(k) (k5uku), thenC andSare
functions ofr 5ur u. The energy spectrumE(k) is given by
E(k)5SdQ(k)kd21, whereSd51, 2p, and 4p in one, two,
and three dimensions, respectively. In 3D, we have
5841 © 1998 The American Physical Society
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C~r !5E
0

`

E~k!
sin kr

kr
dk, ~1!

S~r !52E
0

`

E~k!S 12
sin kr

kr Ddk. ~2!

Similar expressions can be obtained in generald-dimensional
space, see, e.g.,@2#. In the following, we use Eqs.~1! and~2!
to demonstrate the relation between the power law scal
in the spectral and physical spaces. They can also be
tained fordÞ3 in a similar fashion. It should be noted th
the assumptions used in deriving Eqs.~1! and ~2! are suffi-
cient but not necessary. All derivations below use only E
~1! and ~2!. Thus the results are applicable to any rand
field that satisfies Eqs.~1! and ~2!. In particular, it can be a
vector field. WhenE(k)5k2n for 0,k,`, we have a pure
power law in the spectral space. We now derive the co
sponding power law in the physical space. Lettingr5kr,
from Eq. ~1! we haveC(r )5C0r n21, whereC0 is given by
an improper integral

C05E
0

`

r2~n11!sin r dr, ~3!

which exists for21,n,1. Note thatn,1 andn.21 en-
sure the convergence ofC0 at r50 andr5`, respectively.
The value ofC0 can be found in@3#:

C05H G~2n!sin~2np/2!, 0,n,1
p/2, n50
G~12n!cos@~12n!p#, 21,n,0.

~4!

Similarly, we haveS(r )5S0r n21 with

S052E
0

`

r2nS 12
sin r

r Ddr. ~5!

Unlike the case forC(r ), the improper integralS0 exists
only for 1,n,3. We note that the ranges ofn in which C0
and S0 exist are different and do not overlap. Therefore
order to obtain the power law in the physical space o
should choose the correlation function or the structure fu
tion according to the scaling exponentn.

III. TRUNCATED POWER LAW

In practice,E(k) does not appear as a pure power law
scales as a power law only in a certain range ofk. Thus the
integrals in Eqs.~3! and~5! contain no singularities and con
vergence is not a problem. However, we see below that
scaling behaviors ofC(r ) andS(r ) are still dictated by the
above convergence conditions for Eqs.~3! and ~5!, respec-
tively.

In this section we assumeE(k)5k2n in the interval
@k0 ,k1# (k1@k0) andE(k)[0 outside the interval. But the
results presented in this paper should be valid also ifE(k)
has a proper cutoff outside the interval. Then in gene
C(r )5A(r )r n21 andS(r )5B(r )r n21, where
gs
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A~r !5E
k0r

k1r

r2~n11!sin r dr, ~6!

B~r !52E
k0r

k1r

r2nS 12
sin r

r Ddr. ~7!

The fact thatA andB are functions ofr indicates thatC(r )
andS(r ) no longer follow a single power law. On the othe
hand, if k0r !1 and k1r @1, thenA'C0 and B'S0 , pro-
vided that nP(21,1) and nP(1,3), respectively. In this
case,C(r ) andS(r ) are approximately power laws with ex
ponentn21.

In the following, we analyze the effect of finite inertia
range ofE(k) and that ofn on the scaling of correlation an
structure functions. The main idea is to obtain asympto
expansions forC(r ) and S(r ) in terms of k0r (!1) and
k1r (@1). We would like to stress thatr need not be very
small to achieve the expansions. In fact,r is strictly in the
physical space inertial range, i.e.,r 1!r !r 0 .

To fix the notation, throughout the paper,Ai and a i de-
notegenericconstants. These constants depend onn and the
dimension of space but independent ofr. In addition,Ai is
independent ofk0 andk1 .

A. A useful convergent expansion

First let us provide a result which will be frequently use
below. We consider the expansion of

E
k0r

k1r

r2msin r dr5C02E
0

k0r

r2msin r dr

2E
k1r

`

r2msin r dr,

where 0,m,2. Denote the first and second integrals on t
right hand side byI 1 and I 2 . Using the Taylor expansion o
sinr for I 1 and integration by parts forI 2 , we obtain

I 15
~k0r !22m

22m
1O„~k0r !42m

…,

I 25~k1r !2mcosk1r 1O„~k1r !2~11m!
…,

respectively. Therefore to the leading orders we have

E
k0r

k1r

r2msin r dr'C02
~k0r !22m

22m
2~k1r !2mcos~k1r !.

~8!

This expansion converges toC0 ask0r→0 andk1r→`. The
convergence becomes slow whenm is close to 2 or 0.

In the following, we expandA(r ) andB(r ). Whenn is in
the proper ranges, Eq.~8! gives the desired result. Otherwis
we may repeatedly apply integration by parts toA(r ) and
B(r ) until the exponent ofr in the remaining integral falls
into the range~0,2!. By Eq. ~8!, this remaining integral gives
the constant term inA(r ) andB(r ), hence theA0r n21 term
in C(r ) andS(r ). However, this term may be dominated b
the terms generated from the integration by parts, which
functions ofr. In these cases, theA0r n21 term is retained in
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the expansions for the purpose of comparison while the o
two terms in Eq.~8! are neglected. It should be noted that t
repeated integration by parts just mentioned is always p
sible if n is not an integer. For simplicity we assume this
true in the expansions below.

B. Power law approximation for correlation function

Case21,n,1. Since 0,11n,2, it follows immedi-
ately from Eq.~8! that

C~r !'r n21@C01A1~k0r !12n2cos~k1r !~k1r !2~n11!#.
~9!

Therefore the power law ofC(r ) is only an approximate one
In practice, one obtains the scaling exponent ofC(r ) by
fitting it with a power function

f 1~r !5a0r m,

wherea0 and m are constants to be determined by a le
squares procedure. Equation~9! indicates that in order to
obtain an accurate exponent one should chooseC(r ) in an r
range such that (k0r )12n!1 and (k1r )2(n11)!1. Note that
the proper choice is determined by the truncation mode
well as the exponent. On the other hand, because the lea
order error due to the truncation atk0 cancels withr n21, we
may better fitC(r ) using a function of the form

f 2~r !5a0r m1a1 . ~10!

It should be noted that the least squares fit now invol
solving a nonlinear system of equations.

Case n.1. By Taylor expansions of sinr and integration
by parts, we obtain from Eq.~8!

C~r !'A0r n211A1k0
12n1A2k0

32nr 2. ~11!

This expansion indicates that the error mainly comes fr
the low-mode truncation and the errordivergesas k0→0.
Note that the last term is relatively small ifn,3. In this case,
we can use Eq.~10! to extract the scaling exponent from
C(r ). But if n.3, the last term dominates the first ter
sinceA2(k0r )32n@A0 . Thus,using Eq. (10) one may obtai
m'2 regardless of the value of n. A simple fix seems to be
including ther 2 term in the fitting function, i.e.,

f 3~r !5a0r m1a11a2r 2. ~12!

However, this does not solve the whole problem because
terms neglected in the expansion~11! may dominate the firs
term if n is large. For example, ifn.5, ak0

52nr 4 term in the
expansion becomes larger than the first and hence Eq.~12!
does not work.

Case n,21.

C~r !'A0r n211A1k1
2~n11!r 22cos~k1r !,

fixed r, C(r )→` as k1→` due to the second term. Thi
term, while containing fast oscillations, cos(k1r), decays
slower thanr n21. Thus it is dominating. We may replacer 2

in Eq. ~12! by r 22 to reflect the asymptotics; however, th
modification is not helpful because of the rapid oscillatio
in the coefficient.
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C. Power law approximation for structure function

The structure functionS(r ) can be analyzed using th
same approach as above. In particular, we observe

E r2nS 12
sin r

r Ddr5E r2~11n!~r2sin r!dr

52
r2sin r

nrn 2
12cosr

n~n21!rn21

2
1

n~n21!
E r12nsin r dr.

Thus the results forC(r ) can be applied directly to the las
integral.

Case1,n,3. It is straightforward to derive

S~r !'r n21@A01A1~k0r !32n1A2~k1r !12n

1A3~k1r !2nsin~k1r !#.

Note that the last term can be neglected becausek1r @1. The
terms withA1 andA2 are small ifn is not close to 3 and 1
respectively. In this case, one can directly extract the ex
nent by fittingS(r ) with f 1(r ). However, f 3(r ) is a better
fitting function which includes the effect of both terms. Th
is demonstrated in Fig. 1, whereS(r ) of a 2D random field
with E(k)5k22 (kP@1,512#) is plotted. Fast Fourier trans
form ~FFT! is used in computingS(r ) and generating the
random field in the (2p)2 domain on a 10242 lattice. The
dotted line is obtained by usingf 1 . It has a slope of 0.99
quite close to the exact value, 1. When usingf 3 , to avoid
solving the nonlinear system of equations, we letm51 and
computea i . We havea054.92, a1520.007 51, anda2
520.757, indicating thatr n21 scaling dominates. In addi
tion, our tests show that the fitting results are sensitive to
data used. The result reported here is obtained from fit
S(r ) in the r interval @0.098, 0.196#, which satisfies the con
dition r 1!r !r 0 . Violating this condition renders an inaccu
rate fitted scaling exponent. Furthermore, we note that
Kolmogorov law for homogeneous turbulence, havingn
5 5

3 , belongs to this case.

FIG. 1. Log-log plot ofS(r ) for n52. Solid line:S(r ); dashed
line: fitted curve usingf 3(r ) with m51; dotted line: fitted curve
using f 1(r ).
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Case n.3. We have

S~r !'A0r n211A1k0
32nr 2. ~13!

Equation~13! differs from Eq.~11! only by a constant term
The above test is performed again here withn54.5. The
results are shown in Fig. 2. The slope of the dotted l
~fitting with f 1! is 1.98, close to 2 instead ofn2153.5 as
predicated by Eq.~13!. Letting m53.5 in f 3 , we find a05
20.338,a155.6931025, anda251.38. Thus ther 2 term is
indeed larger. Our tests show that increasingn makesa0 /a2
smaller and hence more dominantr 2 scaling inS(r ). It is
also seen from the figure thatf 3 does not fit better thanf 1
due to largen.

Case n,1. The leading orders ofS(r ) are

S~r !'A0r n211A1k1
12n1A2k1

2nr 21sin~k1r !.

Note that for fixedr , S(r )→` ask1→`. I m here contains
only I 1 . Furthermore, 22m512n, I m canceling withr n21

gives a constant term. Whenn.0, Eq.~10! can be used since
the last term is small. However, whenn,0, we have a situ-
ation similar to that ofC(r ) whenn,21.

IV. POWER LAWS WITH SMOOTH CUTOFF

In most real physical processes, the power laws are
truncated sharply but with smooth cutoff functions. It
straightforward to include the effect of these functions in
above derivation. Indeed, from the derivation of Eq.~8! we

FIG. 2. Log-log plot of S(r ) for n54.5. Solid line: S(r );
dashed line: fitted curve usingf 3(r ) with m53.5; dotted line: fitted
curve usingf 1(r ).
-
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see that the contributions of the smooth cutoff functions
rather small under the assumptionsk0r !1 andk1@1. This is
because the cutoff functions are regular atk50 and usually
much less singular ask→` than the power law itself. There
fore the results obtained above for the inertial range a
hold for the cases with smooth cutoffs. On the other ha
the cutoff functions should have a strong effect outside
inertial range. For example, they would change the bend
at the two ends of the power law in the physical space
Fig. 1.

V. CONCLUDING REMARKS

In this paper we have studied the translation between
power law of the energy spectrum and that of the correlat
function or the second order structure function. We ha
obtained the following four conclusions.

~1! Power laws in spectral and physical spaces h
simple correspondence only forn in proper ranges, i.e.
~21,1! and ~1,3!, respectively, for the correlation and stru
ture functions. The effect of finite power law range in th
spectral space results in a much shorter power law rang
the physical space.

~2! Based on the asymptotic expansions, a fitting funct
f 3 is proposed for better recovery ofn from S(r ) andC(r ).
For a given value ofn, we recommend using eitherS(r )
(1,n,3) or C(r ) (21,n,1) for studying the corre-
sponding power law in the physical space.

~3! When n is outside the proper ranges, the correlati
and structure functions are generally dominated by so
functions ofr that are independent ofn. Thus recoveringn is
very difficult, if not impossible.

~4! Following the analysis outlined above, one finds th
the translation of a power law from the physical space to
spectral space suffers similar problems.

A fundamental question relevant to the above obser
tions is, which space in the power law of a physical proce
such as turbulence, has a wider range of applicability intr
sically? For homogeneous turbulence in a periodic box, v
ous numerical studies seem to indicate that the spectral s
is more ‘‘intrinsic’’ ~in the sense that the power law range
longer!. However, a general answer to the question is bey
the scope of this paper.
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